Course Overview
Accelerate Your Career with an Industry-Recognised Certification!
Ready to Level Up and Achieve Professional Recognition?
Whether you’re looking to enter a new field, upskill in your current job, or give your resume a boost, our CPD Accredited Machine Learning for Aspiring Data Scientists: Zero to Hero Online Training Program is the key to unlocking new career opportunities.
This engaging and flexible Machine Learning for Aspiring Data Scientists: Zero to Hero online course is designed to provide you with the professional qualification and hands-on expertise that employers value. No complicated textbooks or stressful schedules—just practical, real-world knowledge you can use right away. Finish with confidence and earn the CPD-accredited certificate that shows you’re ready to succeed.
Course Curriculum
- Module 01: Modeling an epidemic
- Module 02: The machine learning recipe
- Module 03: The components of a machine learning model
- Module 04: Why model?
- Module 05: On assumptions and can we get rid of them?
- Module 06: The case of AlphaZero
- Module 07: Overfitting/underfitting/bias/variance
- Module 08: Why use machine learning
- Module 09: The InsureMe challenge
- Module 10: Supervised learning
- Module 11: Linear assumption
- Module 12: Linear regression template
- Module 13: Non-linear vs proportional vs linear
- Module 14: Linear regression template revisited
- Module 15: Loss function
- Module 16: Training algorithm
- Module 17: Code time
- Module 18: R squared
- Module 19: Why use a linear model?
- Module 20: Introduction to scaling
- Module 21: Min-max scaling
- Module 22: Code time (min-max scaling)
- Module 23: The problem with min-max scaling
- Module 24: What’s your IQ?
- Module 25: Standard scaling
- Module 26: Code time (standard scaling)
- Module 27: Model before and after scaling
- Module 28: Inference time
- Module 29: Pipelines
- Module 30: Code time (pipelines)
- Module 31: Spurious correlations
- Module 32: L2 regularization
- Module 33: Code time (L2 regularization)
- Module 34: L2 results
- Module 35: L1 regularization
- Module 36: Code time (L1 regularization)
- Module 37: L1 results
- Module 38: Why does L1 encourage zeros?
- Module 39: L1 vs L2: Which one is best?
- Module 40: Introduction to validation
- Module 41: Why not evaluate model on training data
- Module 42: The validation set
- Module 43: Code time (validation set)
- Module 44: Error curves
- Module 45: Model selection
- Module 46: The problem with model selection
- Module 47: Tainted validation set
- Module 48: Monkeys with typewriters
- Module 49: My own validation epic fail
- Module 50: The test set
- Module 51: What if the model doesn’t pass the test?
- Module 52: How not to be fooled by randomness
- Module 53: Cross-validation
- Module 54: Code time (cross validation)
- Module 55: Cross-validation results summary
- Module 56: AutoML
- Module 57: Is AutoML a good idea?
- Module 58: Red flags: Don’t do this!
- Module 59: Red flags summary and what to do instead
- Module 60: Your job as a data scientist
- Module 61: Intro and recap
- Module 62: Mistake #1: Data leakage
- Module 63: The golden rule
- Module 64: Helpful trick (feature importance)
- Module 65: Real example of data leakage (part 1)
- Module 66: Real example of data leakage (part 2)
- Module 67: Another (funny) example of data leakage
- Module 68: Mistake #2: Random split of dependent data
- Module 69: Another example (insurance data)
- Module 70: Mistake #3: Look-Ahead Bias
- Module 71: Example solutions to Look-Ahead Bias
- Module 72: Consequences of Look-Ahead Bias
- Module 73: How to split data to avoid Look-Ahead Bias
- Module 74: Cross-validation with temporally related data
- Module 75: Mistake #4: Building model for one thing, using it for something else
- Module 76: Sketchy rationale
- Module 77: Why this matters for your career and job search
- Module 78: Classifying images of handwritten digits
- Module 79: Why the usual regression doesn’t work
- Module 80: Machine learning recipe recap
- Module 81: Logistic model template (binary)
- Module 82: Decision function and boundary (binary)
- Module 83: Logistic model template (multiclass)
- Module 84: Decision function and boundary (multi-class)
- Module 85: Summary: binary vs multiclass
- Module 86: Code time!
- Module 87: Why the logistic model is often called logistic regression
- Module 88: One vs Rest, One vs One
- Module 89: Where we’re at
- Module 90: Brier score and why it doesn’t work
- Module 91: The likelihood function
- Module 92: Optimization task and numerical stability
- Module 93: Let’s improve the loss function
- Module 94: Loss value examples
- Module 95: Adding regularization
- Module 96: Binary cross-entropy loss
- Module 97: Recap
- Module 98: No closed-form solution
- Module 99: Naive algorithm
- Module 100: Fog analogy
- Module 101: Gradient descent overview
- Module 102: The gradient
- Module 103: Numerical calculation
- Module 104: Parameter update
- Module 105: Convergence
- Module 106: Analytical solution
- Module 107: [Optional] Interpreting analytical solution
- Module 108: Gradient descent conditions
- Module 109: Beyond vanilla gradient descent
- Module 110: Reading the documentation
- Module 111: Binary classification and class imbalance
- Module 112: Assessing performance
- Module 113: Accuracy
- Module 114: Accuracy with different class importance
- Module 115: Precision and Recall
- Module 116: Sensitivity and Specificity
- Module 117: F-measure and other combined metrics
- Module 118: ROC curve
- Module 119: Area under the ROC curve
- Module 120: Custom metric (important stuff!)
- Module 121: Other custom metrics
- Module 122: Bad data science process
- Module 123: Data rebalancing (avoid doing this!)
- Module 124: Stratified split
- Module 125: The inverted MNIST dataset
- Module 126: The problem with linear models
- Module 127: Neurons
- Module 128: Multi-layer perceptron (MLP) for binary classification
- Module 129: MLP for regression
- Module 130: MLP for multi-class classification
- Module 131: Hidden layers
- Module 132: Activation functions
- Module 133: Decision boundary
- Module 134: Intro to neural network training
- Module 135: Parameter initialization
- Module 136: Saturation
- Module 137: Non-convexity
- Module 138: Stochastic gradient descent (SGD)
- Module 139: More on SGD
- Module 140: Backpropagation
- Module 141: The problem with MLPs
- Module 142: Deep learning
- Module 143: Decision trees
- Module 144: Building decision trees
- Module 145: Stopping tree growth
- Module 146: Pros and cons of decision trees
- Module 147: Decision trees for classification
- Module 148: Bagging
- Module 149: Random forests
- Module 150: Gradient-boosted trees for regression
- Module 151: Gradient-boosted trees for classification [optional]
- Module 152: How to use gradient-boosted trees
- Module 153: Nearest neighbor classification
- Module 154: K nearest neighbors
- Module 155: Disadvantages of k-NN
- Module 156: Recommendation systems (collaborative filtering)
- Module 157: Introduction to Support Vector Machines (SVMs)
- Module 158: Maximum margin
- Module 159: Soft margin
- Module 160: SVM vs Logistic Model (support vectors)
- Module 161: Alternative SVM formulation
- Module 162: Dot product
- Module 163: Non-linearly separable data
- Module 164: Kernel trick (polynomial)
- Module 165: RBF kernel
- Module 166: SVM remarks
- Module 167: Intro to unsupervised learning
- Module 168: Clustering
- Module 169: K-means clustering
- Module 170: K-means application example
- Module 171: Elbow method
- Module 172: Clustering remarks
- Module 173: Intro to dimensionality reduction
- Module 174: PCA (principal component analysis)
- Module 175: PCA remarks
- Module 176: Code time (PCA)
- Module 177: Missing data
- Module 178: Imputation
- Module 179: Imputer within pipeline
- Module 180: One-Hot encoding
- Module 181: Ordinal encoding
- Module 182: How to combine pipelines
- Module 183: Code sample
- Module 184: Feature Engineering
- Module 185: Features for Natural Language Processing (NLP)
- Module 186: Anatomy of a Data Science Project
What You Will Gain from This Machine Learning for Aspiring Data Scientists: Zero to Hero Training
- Understand core principles and concepts of the Machine Learning for Aspiring Data Scientists: Zero to Hero.
- Apply practical skills in real-world workplace scenarios.
- Chance to earn a recognized certification after completing the Machine Learning for Aspiring Data Scientists: Zero to Hero
- Develop industry-specific skills to advance professional growth.
- Gain confidence to handle tasks and challenges effectively.
- Broaden knowledge in the field of Machine Learning for Aspiring Data Scientists: Zero to Hero for well-rounded expertise.
- Strengthen critical thinking and problem-solving abilities and much more…
Why Choose Centre of Professional for Your Learning Journey?
- Eligible to order a CPD-accredited certificate upon successful completion.
- Career support and guidance available to help you navigate your next steps.
- High-quality, engaging video lessons available anytime, anywhere.
- Lifetime Access to all Machine Learning for Aspiring Data Scientists: Zero to Hero materials.
- Get 24/7 customer support with our
Machine Learning for Aspiring Data Scientists: Zero to Hero training.
Who Can Benefit From This Machine Learning for Aspiring Data Scientists: Zero to Hero?
This Machine Learning for Aspiring Data Scientists: Zero to Hero is perfect for:
- Career starters or job seekers looking to enhance their qualifications.
- Professionals looking to transition into a new field or expand their knowledge.
- Anyone who wants to gain accredited certification with flexible online access.
- Career changers aiming for a fresh start with a respected qualification.
- Busy professionals in need of self-paced learning with real-world applications.
Requirements of Machine Learning for Aspiring Data Scientists: Zero to Hero Training
No prior experience needed to enrol in this Machine Learning for Aspiring Data Scientists: Zero to Hero—just a passion for learning and personal growth!
What Our Learners Are Saying
“The flexibility of the course allowed me to study while working full-time. The CPD-accredited certificate really helped me stand out in interviews!”
“A great learning experience! I’m now confident in applying archiving techniques in my job and have already seen an impact in my performance.”
“The course is straightforward, easy to follow, and offers real-world skills that I could use on day one. Highly recommend!”
Secure Your Spot Today!
Our spots fill up quickly, and demand is high. Don’t wait—reserve your place in the
Machine Learning for Aspiring Data Scientists: Zero to Hero (CPD Accredited) and start your journey towards career growth and success today!